
Human Body Tracking by Adaptive Background Models and Mean-Shift
Analysis

Fatih Porikli Oncel Tuzel
Mitsubishi Electric Research Labs,

Murray Hill, NJ 07974, USA

Abstract

We present an automatic, real-time human tracking and ob-
servation system. Robustness and speed are the two major
bottlenecks of the existing approaches. We improve upon
the robustness and speed of the current state-of-art by in-
tegrating a mean-shift based model update technique with
an adaptive change detection method. We also provide op-
timal solutions for several other stages including illumina-
tion compensation, skin color detection, shadow removal,
morphological filtering, event analysis of a tracking system.
In addition, we introduce a novel background refresh mech-
anism. Thus, the proposed framework is capable of han-
dling shortcomings of template and correspondence based
tracking approaches. The results with the ICVS-PETS data
sets show the effectiveness of the algorithm.

1. Introduction
Accurate object segmentation and tracking under the con-
straint of low computational complexity presents a chal-
lenge. A typical detection system is built by finding regions
in motion, eliminating shadows and noise, constructing and
tracking objects in video.

Background Subtraction The most common approach
for discriminating a moving object from the rest for sta-
tionary camera setup is background subtraction. Basically,
background detection approaches can be classified as non-
adaptive and adaptive methods. Manual selection, pixel-
wise voting, and mean value search algorithms are among
the non-adaptive methods. Adaptive methods include aver-
aging images over time, alpha-blending [5], Kalman filter-
ing, Gaussian mixture models (GMM), etc. Although aver-
aging and alpha blending are simple and fast, they are not
effective for scenes with many moving objects particularly
if they move slowly. Besides, they cannot handle multi-
modal backgrounds. They recover slowly when an object
occupies the scene at the initialization phase. Pixel-wise
voting among the accumulated images may handle some of
the recovery problems, however it becomes computation-
ally very expensive with the increasing number of images.
Kalman filtering approaches such as in [7] may only pro-

vide some partial solution. An adaptive multi-class statisti-
cal model for the background and foreground is proposed
in [10]. However, this systems is sensitive to initializa-
tion inaccuracies. A widely accepted solution for multi-
model backgrounds that uses a mixture of Gaussian models
is presented in [4]. A similar approach with minor differ-
ences on update and initialization mechanisms that are for-
mulated as an EM framework in [3]. The Gaussian model
based approaches have capability of dealing with illumina-
tion changes. Also, repetitive variations are learned. For the
model numbers higher than three, this method becomes too
slow to be practical. A major shortcoming of all the above
background methods is that they lack an adaptive mecha-
nism to control the update frequency.

Shadow Removal Shadows cause serious problems such
as merging of objects, distortion of color histogram of ob-
jects, shape deformations, false identifications. There are
many proposed methods to find shadows. Some approaches
prefer the HSV color space analysis since a shadow cast
on a background does not change significantly its hue
[2]. Other works exploit saturation information consider-
ing shadows often lower the saturation of the pixels. In [6],
a pixel is classified into one of the four categories, fore-
ground, background, shadow, highlight, depending on the
distortion of the brightness and the distortion of the chromi-
nance of the difference. The main limitation of these meth-
ods is that they do not adapt to different types of shadow,
e.g. ambient, spot. In [8] the shadow detection is provided
by verifying three criteria: the presence of a darker uniform
region; the presence of a high difference in luminance with
respect to reference; and the presence of static and moving
edges. However, these assumptions are difficult to justify in
general. They require several predefined parameters.

Object Tracking Generally speaking, tracking of ob-
jects can be done either by back-tracking or by forward-
tracking. The back-tracking based approach segments fore-
ground regions in the current image and then establishes
the correspondence of regions between the previous image.
The forward-tracking approach estimates the positions of
the regions in the current frame using the segmentation re-
sult obtained for the previous image. For establishing cor-

1

Figure 1: The flow diagram of the object tracking.

respondence, several object templates are utilized [5], [10],
[9]. The limitation of this approach is a single template is
not sufficient for wide variety of applications, e.g. human
tracking and traffic monitoring require different templates.
A possible forward-tracking technique is mean-shift analy-
sis. Mean-shift is a nonparametric density gradient estima-
tor. In [1], it is employed to derive the object candidate that
is the most similar to a given model while predicting the
next object location. This method provides accurate local-
ization, and it is computationally fast. However, the mean-
shift tracker is not automatic since it requires initial model
properties, i.e. object boundary, etc.

In this paper, we have integrated a model-based back-
ground subtraction into a mean-shift based forward tracking
mechanism. We combined these methods to accomplish an
automatic and robust tracker that can handle high resolu-
tion color video in real-time. We also address other main
difficulties, i.e. managing sudden illumination changes in
the scene, overcasts, shadows, and correspondence prob-
lems. We find human face and arms by applying a skin
color mask which is formulated in the RGB space by offline
training. As shown in Fig.1, our method generates a refer-
ence image using pixel-wise mixture models, finds changed
part of image by background subtraction, removes shadows
by analyzing color and spatial properties of pixels, deter-
mines objects, and tracks them in the consecutive frames.
In addition, we developed geometry and motion based rules
to detect a set of events such as hand raise, hand touching
head, number of heads and arms, etc., for human objects.

The paper is organized as follows. Section 2 discusses
the generation of adaptive reference image, detection of
skin color pixels, and computation of change detection
scores. Section 3 explains the proposed shadow removal
algorithm. Section 4 describes the construction of objects
by connected components. Section 5 explains the fusion of
change detection scores and mean shift based tracking and
gives tracking examples.

2. Background Generation & Update
In background subtraction, the current image is compared
to a reference image to detect the changed pixels. Thus, the
first problem is how to determine the reference image. Dur-
ing tracking, the reference image should be compensated
according to the lighting condition of the scene. Thus, the
second problem is how to make the reference image adapt-
able to illumination changes. The third problem is how fre-
quent the adaptation should be.

The reference image is constructed by utilizing pixel-
wise mixture of models to support multi-model back-
grounds. We model the history of a color channel each pixel
by a mixture of Gaussian distributions. Let the color value
of a pixel be denoted by I(p). We define the probability of
observing the current pixel color value for a single channel
at frame t as

P (I(p); t) =

NX
n

wn(t)g(I(p); �n(t); �
2

n(t)) (1)

where N is the number of distributions, wn(t) is the weight
of the nth Gaussian in the mixture, �n(t) and �2n(t) is the
mean value and the variance of the nth Gaussian in the mix-
ture at frame t respectively, and g is a Gaussian probability
density function as

g(I(p); �; �2) =
1p
2��

e�
[I(p)��]2

�2 (2)

In the above formulation, the color channels are assumed
to be independent from each other due to the computational
reasons. Another option is to use a covariance matrix, how-
ever this formulation had minimal improvement on the re-
sults we observed although the model update mechanism
became computationally very demanding. A flow diagram
of the background generation is shown in Fig. 2.

Initially, the variances of all models are set to a high
value, and their weights to a small value, since none of the
background models has sufficient statistics to be a confident
prediction. The reference imageB is updated by comparing
the current pixel with the existingK Gaussian distributions.
In case the color value of the current pixel is similar to the
mean value of a distribution, it is marked as a match. The
distance threshold is set to 2:5� to include the 95% of the
color values which form the model. If none of the K dis-
tributions (K < N) matches the current pixel value, a new
distribution is initialized. In case of K = N , the distri-
bution with the highest variance (lowest confidence) is re-
placed with a distribution with the current pixels value as
its mean value, and a large initial variance. The means and
variances of the matched distributions are updated using a
learning coefficient as

�n(t) = [1� �]�n(t� 1) + �I(p) (3)

�2n(t) = [1� �]�2n(t� 1) + �[�n(t)� I(p)]2 (4)

2

Figure 2: The background update mechanism.

and the weights of the existing K distributions wn(t) n =
1; ::;K are adjusted as

wn(t) =

�
(1��)wn(t�1)+� j�n(t)�I(p)j < 2:5�n(t)
(1��)wn(t�1) j�n(t)�I(p)j � 2:5�n(t)

where I(p) is the current color value of a pixel. To deter-
mine the value of a reference image pixel at a channel, the
Gaussian model with the smallest variance (highest confi-
dence) and the highest weight is selected.

The learning coefficient� serves as a parameter that con-
trols the rate of the adaptation of the reference image to the
current frame. With the higher the illumination change be-
tween the frames, the larger values of the learning coeffi-
cient is selected, thus the background image is influenced
more by the current image. However, such high values may
cause a stopped object to erode in the background as well.

As the answer of the third question, the reference image
is updated if only a lighting change occurs in the scene. In
fact, there is no need to update the Gaussian models that
already have very low variance (high confidence). Instead
of blindly updating the background at certain frequencies
as in [4], we detect illumination changes and control the
updating mechanism accordingly.

For this propose, we compute an illumination change
score �(t) for a set of randomly selected pixels that do not
correspond to an object in the previous frame

�(t) =

������1�
X
q2Q

jB(q)jjI(q)j cos �
jB(q)j

������ (5)

where � is the angle between the pixels color vector I(q)
and background color vector, and Q is the pixel set de-
scribed above. In case the value of the illumination change
score �(t) is larger than a threshold the learning parameter
is adjusted as

� = 0:01 +
�(t)

c
�1 < �(t) (6)

Figure 3: Simplified skin colors in the RGB space.

where c is the number of pixels in the set Q. The value of
�1 is determined empirically, and it controls the agility of
the update mechanism depending on the application. The
thresholds are set empirically. We adapt the period �tm of
the update mechanism as shown in Fig. 4

�tm =

8<
:

�tmax �(t) � �0
min(�tm�1+1;�tmax) �0 < �(t) � �1
1 �1 < �(t)

(7)
where m is the total number of updates after initialization,
�0 < �1, and �tmax is a the maximum number of frames
that system waits before an update. We observed that this
parameter depends on the amount of the image noise.

2.1 Skin Color Extraction

In addition to the foreground-background separation, the
foreground pixels are further classified as skin color pix-
els or non-skin color pixels. We used a skin color mask
S(c) that gives the likelihood of a color vector correspond-
ing to human skin. To obtain this mask, several manually
segmented human face and body images from various races
are mapped into the RGB space, and the number of pixels
for each color vector is counted. Gaussian density models
G(c�; c) are assigned according to the number of pixels

G(c�; n�; c) = n� exp

�
�jc� c�j

�
(8)

where n� is the number of skin color pixels corresponding
to the color vector c�, and
 is a density constant. This pa-
rameter can be a variable of color vectors, i.e.
(c; c�), by
establishing a perceptual similarity of the colors. However,
the RGB color space is not suitable for obtaining a percep-
tual similarity matrix. The skin color mask is obtained by

S(c) =
X
ci2V

G(ci) (9)

where V is a 3D volume around the color vector. We used
a (3�3�3) cube as the volume V in the simulations.

3

Figure 4: The update coefficients.

We have also fitted a parametric shape to the simplified
mask such that S(c) = 1 if the following conditions are
satisfied; j arctan(b

r
)� �

4
j < �

8
, j arctan(g

r
)� �

6
j < �

18
,

j arctan(b
g
)� �

5
j< �

15
, and 0:1 < r + g + b < 0:9 as shown

in Fig. 3.

2.2 Change Detection

Since the background is adapted only when an illumination
change is detected, major reduction in overall computation
is achieved while still taking advantages of Gaussian mix-
ture model approach. The color difference d(p) between the
current image and the reference image is defined as

d(p) = jB(p)� I(p)jw�n(t; p) (10)

where w�n(t; p) stand for the weight of the best model cor-
responding to pixel p. If this distance is bigger than a color
threshold, it is marked as a possible foreground pixel. There
should be a lower limit for the model variance since it di-
rectly effects the weight. Otherwise, in case the best back-
ground model has very low variance, a competing model
may be initialized which is very close to it due to the fact
that 2:5� becomes small in return.

The color difference is multiplied by the skin color mask
d(p) � S(cp) to determine the human skin color pixels.

2.3 Comparison of Background Algorithms

We tested the proposed method and several other back-
ground generation methods including the mean computa-
tion, voting, alpha-blending, Kalman filtering, and the con-
ventional GMM. We evaluated the quality of the gener-
ated backgrounds using a ground-truth background, which
is generated by voting among the selected 300 frames. We
observed that this background is accurate enough to be as-
signed as the ground-truth for the specific input sequence.

We computed two error scores to measure frame differ-
ences. The first score is the color difference between the

0 50 100 150 200 250
0

2000

4000

6000

8000

10000

12000

frame number

nu
m

be
r

of
 p

ix
el

s

mean nf
mean f
mean f2
vote nf
vote f
vote f2
alpha
kalman
GMM

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

7

frame number

di
st

an
ce

mean nf
mean f
mean f2
vote nf
vote f
vote f2
GMM

(a) (b)

Figure 5: (a) Number of outlier pixels Terr. (c) Averaged
difference �err.

ground-truth and the current background

�err =

 X
p

[B(p)t � G(p)]2
!0:5

(11)

where G is the ground-truth. The second score Terr counts
the number of pixels at the current background that do not
match with the ground-truth. For the mean computation and
voting methods, we removed the moving regions to mini-
mize blurring of the background. We estimated moving re-
gions simply by taking frame-wise difference between the
current frame t and the previous frame (t� 1). We also
tested using longer time laps such as (t�5). Fig.5 shows
the computed error scores Terr and �err for a test sequence
in which the scene was initially occluded with two objects.
Our tests with other sequences gave similar results.

We observed that the GMM method has the best stability.
It was able to handle the moving regions without disturb-
ing the background, and its accuracy improves with each
update. The adaptation performance of the Kalman filter-
ing depends on the preset learning parameters. Besides, it
cannot handle both slow and fast moving regions and back-
ground changes at the same time. The mean computation
method causes blurring for multi-modal backgrounds, and
ghost effects for moving regions. The alpha-blending is
very sensitive to the noise.

In terms of computational complexity, the alpha-
blending method is the fastest method; it takes less than
1 msec/frame to estimate a 320� 240 color background
on a 1.8Ghz machine. The GMM method with 3 models
reaches 17 msec/frame, however its performance rapidly
decreases for the higher number of models and becomes
very slow if more than 5 models are used. The Kalman
filtering performs mediocre around 25 msecs/frame since it
suffers from the pixel-wise update mechanism. The mean
computation method also requires intensive operations, it
takes 30 msecs/frame for a 100 frames window. The voting
method is impracticable for large number of frames, e.g. it
spends several seconds for a 100 frames window.

4

Figure 6: Original image and change detection result. Red
pixels are detected as shadow, and green pixels as fore-
ground. Blue pixels will be reevaluated in the iterative loop.

3. Shadow Removal
After background subtraction, we find the possible fore-
ground pixels that their color values are different from the
reference image. However, not all the pixels change their
color values because they correspond to objects. Shadow
pixels are also detected as different from the background,
thus the background subtraction gives us pixels correspond
to objects as well as shadows. Likelihood of being a shadow
pixel is evaluated iteratively by observing the color space
attributes and local spatial properties as shown in Fig. 6.

At the first stage, we determine whether a pixel is a pos-
sible shadow pixel or not by evaluating the different com-
ponents of color variation. We carried out our evaluations
in the RGB color space. We assume that shadow decreases
the luminance and changes the saturation, yet it does not
affect the hue. The projection of the color vector to the
background color vector gives us the luminance change h

h = jI(p)j cos� (12)

where � is the angle between B(p) and I(p). Note that,
the color values are normalized to [0; 1] range. We define
a luminance ratio as r = jB(p)j=h. We compute a second
angle �B between the B(p) and the white color (1; 1; 1).
For each possible foreground pixel obtained, we apply the
following test and classify the pixel as a shadow pixel if it
satisfies both of the conditions

� < min(�B ; �0) ; r1 < r < r2 (13)

where �0 is the maximum angle separation, r1 < r2 deter-
mines maximum allowed darkness and brightness respec-
tively. Thus, we define the shadow as a conic around the
background color vector in the color space (Fig.7). Those
pixels that satisfy the above conditions are marked as possi-
ble shadow pixels, the rest remains as possible foreground.

At the second stage, we refine the shadow pixels by eval-
uating their local neighborhood. If the illumination ratio
of two shadow pixels are not similar than they assigned as

Figure 7: Shadow is defined as a conic volume.

unclassified. Then, inside a window the number of fore-
ground F , shadow S, and unclassified pixels U are counted
for the center pixel, and following rules are applied itera-
tively: (F > U)^(F > S)! F , (S >U)^(S > F)! S,
and else U . The shadow removal mechanism is proved to be
effective and adjustable to the different lighting conditions.

4. Pixels to Objects
After shadow removal, we have the binary image of fore-
ground pixels that corresponds to the objects. The next task
is to find the separate objects. To accomplish this, we first
remove speckle noise by morphology, then determine con-
nected regions, and group regions into separate objects for
both foreground pixels and skin color pixels separately.

To speed up the filtering process, we developed a fast
erosion-dilation filter. Since we have a binary foreground-
background map, we transfer each 32 horizontal pixel val-
ues into a 4-byte integer number. By shifting right and left,
and applying logical inclusion operation to the upper and
lower rows, we apply morphological dilation. In the second
pass, logical exclusion is applied instead of inclusion simi-
larly to erode the image. Thus, we achieve 32 times faster
filtering by taking the advantage of the architecture.

We apply connected component analysis to determine
the connected regions of the foreground pixels after filter-
ing. We implemented it as a graph-based single-pass algo-
rithm instead of a conventional two-pass approach. During
the connected component analysis, we detect the connected
regions, compute the total number of pixels of a connected
region, the center of mass, the outer box coordinates, and
also an inner box coordinates. The inner box includes 90%
of the pixels by starting from the pixels close to the center of
mass. Using an inner box, it is possible to differentiate the
convex regions from the elongated ones. A convex region
has a small ratio of the outer box to inner box coordinate
ratio, whereas an elongated region has larger values.

We employ a rule-based decision process that initializes
an object by observing the properties of the connected com-
ponents. We use the above properties of regions to merge

5

Figure 8: The fusion stages are marked in the ellipse.

them together. If the inner boxes of two regions are over-
lapping they are assigned to the same object. Otherwise, if
their outer boxes are overlaying and the overlapping area is
comparable to the area of regions they are assigned to the
same object. For each group of merged regions, an object
such that its status is set to “possible” is initialized, and a
single outer box is fitted for it. This box and the regions con-
struct the initial object. The possible objects are upgraded to
regular objects after they consistently appear. We measured
the consistency score as the number of consecutive frames
where the possible object is detected. The current imple-
mentation assumes 8 frames as the consistency threshold.
This score decreases if the object cannot be matched in the
next frame. If the score becomes less than the threshold the
status of the object is degraded, and if becomes zero, the
object is deleted from the current object list.

Note that, we do not label each connected component
and its pixels by the object number it was assigned. The
connected component structure is preserved. On the other
hand, an object keeps the record of its constituent connected
components. Thus, the object regions are not necessarily be
connected to each other. This improves the tracking accu-
racy under shadow or other difficult conditions that objects
can be divided into multiple small parts. Objects become
very close or disappear behind each other causes one type
of occlusion. In such cases, the update process of the object
color histograms (as explained in the following section) and
their consistency scores are frozen, an overall box is cre-
ated for the occluded region, and possible partitions of the
connected components within this box is observed in the
following frames. As soon as one of the partitions is qual-
ified as a possible object as defined above, it is compared
with the frozen histograms also its speed, direction with the
occluded objects properties. Even multiple object occlusion
situations, the system was able to track the objects after they
separated. The second type of occlusion, i.e. an object sud-
denly disappears outside of an entry/exit region, is handled

by using the consistency score. The Fig. 8 shows a detailed
flow diagram of the decision process. Once a regular object
is initialized, it is tracked by using color histograms.

5 Fusion of GMM & Mean-Shift

The mean-shift tracker can find the correct localization of a
region in the following frame using the region’s characteris-
tic distributions, e.g. color histogram and change detection
mask. However, it cannot initialize the region by itself.

We provide the initial regions and their properties by
background subtraction. During this process, we specify
the color distribution histogram of a region. Then, using
color histograms, we achieve to track objects by comput-
ing the highest gradient direction. Let h1 = fh1(n)g be a
given discrete histogram density, and h2(y) = fh2(y; n)g
is the target discrete histogram density for the location y
such that

PN

n h1(n) = 1 and
PN

n h2(y; n) = 1. The ini-
tial color histogram h1 is computed from the color vectors
I(pi) where i = 1; ::R of the current object as

h1(n) =
1

C1

RX
i

k(pi)Æ[I(pi)� n] (14)

where normalization constant C1 is the sum of values of
the kernel function k(), i.e. C1 =

PR

i k(pi), and Æ(:) is
impulse function. Similarly, the target histogram becomes

h2(y; n) =
1

C2

RX
i

k(y; pi)Æ[I(pi)� n]: (15)

The target histogram location estimation problem is for-
mulated as the derivation of estimate that maximizes the
Bayes error associated with the given and target distribu-
tions. For this purpose, the discrete sample estimate of the
Bhattacharya coefficient is utilized since it is nearly opti-
mal and imposes a metric structure. This estimate and the
distance between two histograms are defined

�[h1;h2(y)] =

NX
n

p
h1;h2(y) (16)

d(y) =
p
1� �[h1;h2(y)]: (17)

Our aim is to minimize the above distance as a function of
y in the neighborhood of a given location y0 by exploiting
the mean shift iterations. Using Taylor expansion around
the h2(y0), the Bhattacharya coefficient �[h1;h2(y)] is ap-
proximated as

� 1

2

NX
n

p
h1;h2(y0) +

1

2C2

RX
i

�ik(y; pi) (18)

6

where

�i =

NX
n

Æ[I(pi)� n]

s
h1

h2(y0)
(19)

Since only the second term in the above equation is depen-
dent y, it has to be maximized to minimize the distance.
This term corresponds to the density estimate using kernel
profile k at y location with weights �i.

Instead of using a predetermined kernel profile as in [1],
we adapt the kernel such that the pixels that are detected
as foreground will have higher weights. Using foreground
information prevents background pixels from causing the
estimation process to deviate. We do not allow a back-
ground pixel, which has similar color value to the initial
object, to change the maximum gradient direction. The ker-
nel k(y; pi) is defined as

k(y; pi) =
d(pi)

Cd

(20)

where the normalization constant Cd represent the maxi-
mum possible color distance. The maximization process
is iterated by given the current object histogram h1(n) ex-
tracted from the previous frame:

1. Compute the histogram h2(y0) in the current frame,
calculate �[h1;h2(y0)] =

PN

n

p
h1; h2(y0),

2. Compute the weights �i, i = 1; :::; R,

3. Derive the new location y1 by mean-shift,

y1 =

PR
i pi�ik(pi)PR

i �ik(pi)
(21)

Update the target histogram h2(y1), and calculate
�[h1;h2(y1)] as above,

4. Stop if j�[h1;h2(y1)j < �, else y1 ! y0, go to step 1.

Each object is tracked as explained above. Then the new
kernel scale is computed by alpha blending the previous
kernel scale and the outer box of the object in the current
frame. The background subtraction may be computed for
only a respectively small portion of the image which cor-
responds to the neighborhood of the objects and entry/exit
regions, thus computational load is reduced further.

After obtaining objects for both skin color regions and
for all foreground regions, the human heads are determined
by heuristics based on the relative position of the skin color
objects with respect to the foreground objects, and sizes and
aspect ratios of the skin color regions. First, separate hu-
man objects are detected using foreground and skin color
objects. Then, the head regions are assigned. Thus, a human
object includes a head region, several other skin regions for
arms, hand, etc. and body regions from foreground objects.

The events, such as hand raise and touching to head, are for-
mulated as the specific motion and position of the skin color
objects grouped under a human object. For example, hand
raise is defined as skin region, which does not correspond
to a head, moves upward, reaches same level as the its cor-
responding head region, and moves downward. Depending
to the detection task, several other movements and gestures
can also be detected since the object detection provides ac-
curate objects. We are currently developing the movement
detection part.

6. Results and Discussion

We implemented the tracking system on a PC platform with
a 1.8Ghz computer. The processing time is 27 milliseconds
on average, ranging from 18�43 milliseconds for 320�240
color video, and around 100 milliseconds for 720�576 color
video. Further improvement is possible by optimizing the
code. The number of objects the algorithm can handle at
the same time is not limited.

We tested our method for the ICVS-PETS dataset
scenario-A, camera-1 setup. Fig. 10 shows the detection
results. We produced a 30 frames/sec AVI video from the
camera-1 JPEG frames. We did not fine tune any GMM,
skin color mask, change detection, and shadow removal pa-
rameter. We did not define any specific entry/exit regions in
the image either. Since we use the size of the objects, we
set the minimum and maximum sizes for the head objects.
This was the only adaptation.

Our test with the camera-1 sequence showed that the pro-
posed method accurately detects and tracks heads. In the
given result images (Fig. 10), we assigned a unique color
code for each tracked skin color object. For the test se-
quence, each head kept its unique color code. The same
color head regions in the result images corresponds to the
same human object. Each separate skin color object has
shown in its own box. We proved that the segmented re-
gions are accurately match with the ground-truth.

We also present movement detection result in Fig. 9. We
show that our detection results are very close to the ground-
truth. We accurately counted the number and frames of the
leftmost speakers (Daniel) hand raises, and the number of
visible heads. We also manage to identify the frames where
the speaker in the middle (Fabian) touches his head.

Fusion: The major novelty of our proposal is that we
make the semi-automatic mean-shift tracker completely au-
tomatic using an improved GMM background subtraction
method. This is not a straightforward integration because
we did not treat each component as a separate stage i.e.
doing background subtraction first and then tracking each
object by mean-shift. Our tests showed such an approach
prone to the initialization errors and it can lose objects
easily due to the intrinsic properties of mean-shift if the

7

500 1000 1500 2000 2500 3000 3500

500 1000 1500 2000 2500 3000 3500

(a)

500 1000 1500 2000 2500 3000 3500
0

1

2

3

4

500 1000 1500 2000 2500 3000 3500
0

1

2

3

4

(b)

500 1000 1500 2000 2500 3000 3500
0

0.5

1

1.5

2

500 1000 1500 2000 2500 3000 3500
0

0.5

1

1.5

2

(c)

Figure 9: (a) Frames where the leftmost speaker (Daniel)
raises his arm. (b) Number of heads facing the cam-
era. We also detect another speaker (Pierre) shortly around
frame 1500. (c) Frames where the middle speaker (Fabian)
touches his head. (Upper rows: ground-truth, lower rows:
results of our method) Dataset is courtesy of ICVS-PETS.

background color is close to the objects color distribution.
We modified the model update and scaling mechanisms
of the original mean-shift tracker such that the mean-shift
tracker uses both color histogram and background map at
the same time. Furthermore, instead of depending on the
preset model scaling parameters of the mean-shift, we use
the GMM results to update the object shape and properties
between the frames.

Background Generation: We used the Stauffer’s GMM
background approach. Their method updates the Gaussian
models at a preset frame period that and does not have a
mechanism to adapt the learning parameter. We improved
the adaptation performance of the original GMM by ob-
serving the amount of illumination change in the back-
ground and updating a second learning coefficient accord-
ingly. This improvement significantly reduces the compu-
tational load by minimizing unnecessary model updates.

Shadow Removal: Our shadow detection is inspired by
[6]. However, we improved their method by adapting not
only to the luminance difference but also to the saturation
difference. We defined the shadow color range as a conic-
cylinder around the background color vector. We also tested
the shadow color range against our dual-layer neural net
training algorithm. Our experiments show we have higher
detection accuracy than the methods compared in [11].

Sensitivity: To adapt the certain shadow detection and
background subtraction parameters of our proposed, we run
several sequences and evaluated their results. Once these
parameters are set, we did not change their values later. We
made the magnitude of the shadow density (dark, light, etc)
as an adjustable parameter, however for the test sequences
we used (ICVS-PETS, PETS2002, ETRI) we did not need
to tune this parameter either. There was no fine-tuning of
any other system parameter for the results. Thus, we be-
lieve that our parameter adaptation methods are working
accurately, and the performance of our tracker is robust.

The performance of the background adaptation and
mean-shift analysis based object tracking method is com-
parable with the state-of-art, and it is fully automatic. It
does not have the intrinsic shortcomings of the template-
matching approaches such as resolution, pose, and illumi-
nation dependencies. As a result of accurate and robust de-
tection, the objects can be further analyzed to determine the
gestures.

References

[1] D. Comaniciu, V. Ramesh, and P. Meer, ”Real-time tracking
of non-rigid objects using mean shift, IEEE Conf. Computer
Vision and Pattern Recognition, South Carolina, Vol. 2, 2000.

[2] R. Cucchiara, C. Grana, M. Piccardi, and A. Prati, ”Detecting
objects, shadows and ghosts in video streams by exploiting
color and motion information”, Proc. of IEEE CIAP, 2001.

8

Figure 10: Tracking results for camera-1. Note that the heads are tracked accurately, i.e. each head has a unique color code.

[3] N. Friedman and S. Russell, ”Image segmentation in video se-
quences: A probabilistic approach,” In Proc. of the Thirteenth
Conf. on Uncertainty in Artificial Intelligence, 1997.

[4] C. Stauffer and W.Grimson, ”Adaptive background mixture
models for real-time tracking”, Proc. IEEE CVPR, 1999

[5] I. Haritaoglu, D. Harwood, and L.S. Davis, ”W4: Who?
when? where? what? a real-time system for detecting and
tracking people”. Proc. of IEEE ICAFGR, 1998.

[6] T. Horprasert, D. Harwood, and L. Davis, ”A statistical ap-
proach for real-time robust background subt. and shadow de-
tection”, Proc. of IEEE ICCV Frame-rate Workshop, 1999.

[7] C. Ridder, O. Munkelt, and H. Kirchner, “Adaptive back-
ground estimation and foreground detection using Kalman-
filtering”. Proc. of ICAM, 1995.

[8] J. Stauder, R. Mech, and J. Ostermann, ”Detection of moving
cast shadows for object segmentation”, IEEE Transactions on
Multimedia, Vol 1, 1999.

[9] M. Yamada, K. Ebihara, and J. Ohya, ”A new robust real-time
method for extracting human silhouettes from color images”,
Proc. of IEEE ICAFGR, 1998.

[10] C.R. Wren, A. Azarbayejani, T. Darrell, and A. Pentland,
”Pfinder: Real-time tracking of the human body”. IEEE
Trans. on PAMI, Vol 19, 1998.

[11] A. Prati, I. Mikic, M. Trivedi, ”Shadow detection algorithms
for traffic flow analysis”, ICITS, 2001

9

